Deduktion

Vom lat. deductio, zusammengesetzt aus de („von etwas weg“) und ducere („führen, leiten“). Eine gedankliche Operation, die auf der Grundlage von einer oder mehreren Prämissen eine Schlussfolgerung als notwendige Konsequenz ableitet (vom Allgemeinen zum Besonderen). In der Logik geht man davon aus, dass diese Schlussfolgerung bereits in den zugrundeliegenden Prämissen enthalten ist. Die Deduktion ist also der Übergang von etwas Implizitem zu etwas Explizitem. In der Mathematik bringt die Deduktion, abgeleitet aus einer Hypothese, einen Erkenntnisgewinn, indem sie neue Konzepte schafft. Die Physik unterzieht sie einer experimentellen Überprüfung. Aristoteles bevorzugt die Deduktion für die Logik und setzt ihr in der Physik die Induktion entgegen, die aus der Beobachtung einzelner Fakten ein allgemeines Naturgesetz ableitet. Descartes setzt sie der Intuition entgegen, die imstande sei, die ursprünglichen Wahrheiten zu erfassen, an die erst die „langen Ketten der Vernunftgründe“ anknüpfen, aus denen sich die deduktiven Ableitungen ergeben. Kant verwendet den Begriff im „juristischen“, rechtfertigenden Sinn (zur transzendentalen Deduktion der Kategorien), um zu zeigen, „dass die subjektiven Bedingungen des Denkens von objektiver Gültigkeit sind“, mit anderen Worten: dass der Verstand auf die Sinneseindrücke die Kategorien anwendet, um wissenschaftlich über sie nachzudenken. Die Phänomenologie des 20. Jahrhunderts schließlich lehnt es ab, die Philosophie der Logik unterzuordnen, und zieht die Beschreibung der Phänomene der Deduktion vor.